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ABSTRACT

The use of ceramics in scientific and industrial applications is

limited by their relatively poor mechanical properties, brittleness

and variability in strength. Design with brittle materials requires an

entirely new concept from that with ductile materials. One must think

in terms of probability rather than virtual certainty.

Statistical flaw theory based on the 'weakest-link' hypothesis

has been applied to problems of fracture and failure of brittle

materials under test loads. One such theory, the Weibull distribution,

which is probably the most widely applied, addresses the statistical

variation of strength and the size effect due to flaws, because in a

variety of conditions both its mathematical formulation and the esti-

mation of the Weibull parameters from experiments are simple. Many

techniques exist to determine the Weibull parameters from the series

of data obtained from experimental tests.

The Log-Log Method is developed for the three-parameter family

distribution of both the uniaxial constant stress field and pure bend-

ing field in a rectangular section bar. This provides for redefining

the dynamic weights assigned to data points iteratively to emphasize the

leading distribution data or to de-emphasize errant points. This

method is compared with those obtained from the Moment Generating Method

and the Newton-Raphson iteration method for the case of uniaxial constant

stress fields.

The Weibull distribution expressions have been developed for the

pure bending and torsion stress states for the fracture of hollow alumina

I



tubes. Such tests are relatively inexpensive and provide useful data

reliably but no closed-form solution exists for the probability formu-

lations. An iteration method based on the least-square minimization

of residual errors in the test results is used to determine the

Weibull parameters.

A simple theory which bypasses the assumptions of independence

under multiaxial stress states and defines all Weibull parameters as

data points about the n = (1,1,1)/3vector in principal stress space

is developed. This allows an extrapolation of biaxially determined

data to the general three-dimensional stress state when an axis of

symmetry exists. In this case, from a table of experimentally deter-

mined Weibull parameters based on biaxial data, a single independent

variable determines the probability of failure of the material in an

arbitrary stress field.
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NOMENCLATURE

a = Fracture Stress

v Poisson's ratio

E = Youngs Modulus

Cut = Ultimate Tensile Stress

auc = Ultimate Compressive Stress

V = Volume of Material under stress

Vun = Unit Volume of Material under stress

p(o) = Probability density function, p.d.f., for Volume, V

f(c) = Probability density function, p.d.f., for elemental Volumes,
vi

g(3) = Cumulative distribution function, c.d.f., for elemental
Volumes, v i

F(C) = Cumulative distribution function, c.d.f., for Volume, V

F(W) = Probability of fracture by Mean Rank or Median Rank Methods,
etc.

Ou = Threshold Stress

m = Weibull Modulus, Shape Parameter

% = Scale Parameter

c = Constant

M = Bending Moment

T = Torque

I = Moment of Inertia

J = Polar Moment of Inertia

L = Length of Specimen

ix



Fw - Arbitrary weights assigned to data pointsr in - Natural Logarithm

exp - Exponential Base of Natural Logarithm

[x

I
[
I
I

~I

[
I

[

L
~L

L x

I



fI
I.

[CHAPTER I

INTRODUCTION

Ceramics are inorganic non-metallic brittle materials which have

been used by mankind for centuries. In ancient times they were used

primarily as materials for pottery and artwork because of their unique

properties of stability and aesthetic appeal. The survival of pottery

over centuries illustrates one of the great advantages which ceramics

possess over most materials; their durability. On the other hand,

I ceramics lacked uniformity and reproducibility. Until three decades

or so ago, users of ceramics procurred their material from one source

and one particular plant of a supplier in order to maintain uniformity.

Ceramic producers were reluctant to change any detail of their pro-

cessing and manufacturing. The reason was that the complex material

systems being used were not sufficiently known at that time to allow

the effect of changes to be predicted or understood.

Today, because of the possibility of technological control of the

L mechanical properties of ceramics and related materials they have

become issues of major importance. Now these materials are used in a

[ number of scientific and industrial applications such as turbine blades,

prosthetics, ceramic bearings, and the like [1]. The rapid growth in

L particular, of the electronics industry has demanded the development

of many specialized types of ceramic insulators. One of the important

IL reasons why ceramics find such wide application in a wide variety of

fields is that these materials exhibit a wide range of desirable

properties. For example, properties of individual ceramics include

L
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resistance to heat, oxidation, corrosion, and abrasion; high elastic

modulus, high strength, and low density with applications to the

nuclear, optical, magnetic, electronic, and other industries. Other

applications are much too long to list here in detail, but some

examples will serve to illustrate the great diversity and importance

of these materials. Special electrical properties form the basis for

applications as insulators, piezoelectric transducers, and an ever-

increasing family of semiconductor devices. In the past twenty years

a great many new types of ceramic insulators have been produced

which included alumina, magnesia, beryllia, zirconia and so on. The

recent use of barium titanate, when placed between the plates of an

electrical capacitor allowed it to store several thousand times the

amount of charge that could be stored by the same capacitor if air

were used instead. This had lead to the production of a series of

related materials called ferroelectrics which have helped make

electronic equipment lighter and smaller. Magnetic ceramics include

cores for computer memories and permanent magnets for electric motors.

Special chemical and thermal properties are exploited in furnaces

and crucibles which are essential to the refining, alloying, and cast-

ing of metals. 'Thermistor' is a special kind of ceramic whose

electrical resistivity varies with changing temperature and is used as

a temperture sensing and control element in automated manufacturing

processes. Thermoelectric properties are important in developing solar

cells supplying energy for satellites [2]. The high elastic moduli and

hardness of certain ceramics make them suitable for special applications

requiring mechanical stablity such as gyroscope mounts and wear
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surfaces while the extremely low thermal expansion achievable is appro-

priate to telescope mirrors and to applications involving thermal shock.

The advent of the missile and the space age has produced exceptional

demands for materials which will stand extremes in temperature and in

other environmental conditions. Ceramic materials such as carbides and

graphites are being used in some rocket nozzles where temperatures in

excess of 5000°F are developed. The high speed of sound in certain

ceramics has led to their successful use in armor, and low damping

characteristic of many ceramics makes them useful as delay lines.

In our atomic age, as atomic energy becomes commercially competitive

with other sources of energy, more efficient nuclear reactors are being

produced requiring extreme operating temperatures and absolute mechanical

integrity for thousands of hours. The thermal stability of certain

nuclear ceramics has led to their adoption as fuel elements for power

reactors and in many cases, several functions must be present simultaneously.

Because of their extreme hardness, especially at high temperatures, ceramics

are widely used for cutting and grinding tools in industry [2]. However,

their use as an abrasive has been limited by the fact that they generally

do not form sharp cutting edges as they wear away (friability). Many

different optical properties of ceramic products are of concern in

different applications. Perhaps the most important are those optical

glasses and crystals used as windows, lenses, prisms, filters or in other

ways requiring useful optical properties as the primary function of the

material.

In citing these burgeoning uses, however, one must face the historic

problem of brittleness and unpredictability in mechanical properties of
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ceramics. These characteristics still remain dictating the need to develop

more sophisticated mechanisms to promote general design with ceramics.

Further a polycrystalline ceramic is usually made up of one or more phases,

grains and pores of various sizes and distributions and impurities inside the

grains and in the grain boundaries. All of these, in addition to process-

ing methods, influence the properties of ceramics [3]. For these reasons,

it is not a straightforward task to formulate design procedures.

Another obstacle to the wider utilization of ceramics is that they

fail with 'glass-like' brittle fracture. They do not normally exhibit

appreciable plastic deformation and their impact resistance is low 14].

This is one of the important reasons that the application of ceramics in

an engineering sense is limited by these relatively poor mechanical

properties, and presently the only generally accepted way of coping with

this problem is by gross overdesign and limiting ceramics to areas where

structural functions have secondary consideration [5].

If ones attention is focused cn the simplest case of the failure of

ceramics, then the effects of multiaxial stresses, temperature, strain

rate, and time dependency are neglected; and only a, the uniaxial stress,

is considered. A group of properties -- fracture toughness, effective

surface energy and work of fracture -- is also important. In some cases

these are related directly to strength. This group gives an indication of

whether a flaw will propagate or not. Defining Yi is an effective surface

energy for the initiation of fracture from an inherent flaw of size c,

a statement of fracture toughness is:

l(E )(l-1)



[5

where Y is a geometrical constant and E, Young's modulus. (2Eyi); is

equal to the stress intensity factor. Also related to y1 is the work

of fracture yf, defined as the energy required to generate a unit area

of fracture face. In general Yf > yi but when yf is measured in a test

involving slow controlled crack growth (rather than a partly catastrophic

crack growth) yf = 71 [6].

From the engineering point of view, ductility is a valuable material

property not only because ductile materials can undergo a large plastic

deformation long before failure but also because ductility leads to

increased contact area where high stresses may occur near boundaries,

dissipating stress concentrations. Further, ductile materials such as

metal can be made and purchased In standard forms such as sheet, tube,

and rod etc., which can be deformed into the required shape and joined

to form structures. Brittle materials must in general be used in the

shape in which they emerL, from the factory. In a more specific

engineering sense, brittle materials have the characteristic that they

are Luable to disperse high local stresses which results in undesirable

consequences for design engineers. The very low ductility and strain

to failure accompanying brittle materials result in a fundamental

distinction between the mechanical strength characteristics of ductile

and brittle materials. Material property test results for nominally

identical steel specimens such as yield and ultininte strength will

seldom differ from specimen to specimen by more than 5%; and a minimum

value or the mean value alone is a satisfactory basis for design whereas

a particular 'static' strength property test on brittle specimens may

show a variation of 100O or more [71, depending on the number and size
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of the specimens. It has been reasonably established that this variability

is not a result of badly controlled specimen preparation or test pro-

cedure but it is an inherent characteristic of brittle materials which do

not exhibit plastic deformation under stress [8]. Thus, the average or

mean strength value is not an adequate basis for specification for engineer-

ing design; the variability must be assessed and taken into account in

brittle materials. Designing with brittle materials does not require

simply different numerical values for the properties of material but a

new concept is required to define the strength, and more important, the

designer must think in terms of probability rather than virtual certainty.

One such concept is known as the 'weakest-link' concept and it

assumes that fracture of the bulk specimen is determined by the local

strength of its weakest volume element. The 'weakest-link' hypothesis

states that brittle materials fail when the stress intensity at any

one flaw in the material reaches the critical value for crack propa-

gation. If flaws are uniformly distributed throughout the material

then the number of flaws present in a specimen is proprrtional to its

volume. This is one reason why large specimens are expected to be

weaker than smaller ones [9]. In addition to these variations, the

use of brittle materials in structural components introduces two more

difficulties to efficient, reliable structural design. They are (1)

variability in mechanical properties, including the infrequent but

real possibility of low values, particularly in large volumes of

material, and (2) the accurate definitiok of the important lower proba-



7

bility of fracture part of the probability distribution curve, which

is necessary if a reliable prediction of failure probability is to be

made for large volumes [10]. Since catastrophic failure is commonly

induced in the brittle materials, once the 'fracture' stress has been

reached, additional and more information may be needed for the use of

such materials in an engineering sense.

The weakest-link concept has been widely used in developing

various statistical theories of strength which differ from each other

only in the way in which the use of the concept is justified, or in

the assumed form of the distribution function of local strength. Its

application to a solid volume was first proposed by Weibull [11) who,

arrived at a distribution function which, now is being widely used for

the statistical interpretation of a variety of test data [121 . This

theory, applied to brittle materials, addresses the statistical varia-

tion of strength and the size effect due to flaws. By assuming that

only tension contributes to fracture (fibers in compression have a zero

probability of fracture) , Weibull extended the theory to bending, and

to any uniaxial combination of bending and tension. Weibull also

extended his theory to failure for polyaxial stress states, although it

has been questioned by many authors [13,14].

The effect of a biaxial stress field on the fracture behavior of

polycrystalline alumina ceramics was studied by Broutman and Cornish

[151. The various stress states of tension-compression, tension-tension

and compression-compression were generated in the walls of thin-walled
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F cylinders by the use of combinations of internal pressure, external

F pressure, and axial loading. Their results for the two stress ratios

investigated in the tension-tension region indicate that the biaxial

rtensile strength is less than the uniaxial. The results in the tension-

compression quadrant were obtained by a combination of axial compressiveI-
loading and internal pressure to produce hoop tension. The experimental

results indicated that the tensile strength increased when compressive

stress existed in the direction normal to the tensile stress. Weibull's

theory did not fit the data well as large amounts of scatter were noted

in the results. Broutman, et. al. [16] showed that the experimental

I data in the tension-compression quadrant followed the Coulomb-Mohr theory

approximately;

l --- 1(1.2)
ou \C uel

where 0 and C 2are principal stresses and 0ut and aue are ultimate

tensile and copressive strength. The modified maximum strain energy

Ltheory
1 2

al --J2v CI 12 ) + 2 (1-3)

(U t/ \0ut aue!\ 0ue/

L
where V is the poisson's ratio, appears to serve as an upper bound.

L
L

I-
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WCHAPTER II

WEAKEST-LINK STATISTICS AND WEIBULL THEORY

[ In this introductory presentation, the concept of 'weakest-link'

statistics for fracture [17] due to tensile stresses has been used to

develop this theory of probability. Consider a volume V of the

material which has the property that fracture of a sub-volume v will

cause catastrophic failure of the whole. V is assumed to be much

larger than v. For generality and simplicity elemental volumes vi

are assumed to be equal and cubic. Each of the elemental volumes will

fracture at certain stress a, characterstic of that element, and we

Iassume a statistical distribution of thesce strengths.

The probability densiti. function for the elemental volumes is

Idesignated f(u). It can be defined in the following way: from an

extremely large number of elemental volumes, the fraction will fail

between 0 and O+dU is f(G)dc which is the same as the probability

that failure will occur between 0 and O+dO. (iUgure 2.1).

Lf(a)

L u

Figure 2.1. Probability Density Function, f(a)

I:
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The probability that failure will occur before stress a isr reached is:
a

g(o) = f f(a)da (2.1)

0

The probability that failure will occur before an infinite

stress is reached is certain, that is, a probability of 1. This means

I; that the function must be normalized such that:

fCO) = () - g(O) = 1 (2.2)10
thus the probability that the elemental volumes will survive a

I stress a is:

1 1- g(a) (2.3)

In the weakest link model, Figure 2.2 the volume V is imagined

composed of a large number N of elemental volumes v, then the number

of elements is N = V/v. It is now assumed that the failure of one

element causes the failure of the whole. The probability of failure

Lof the whole in the stress range o to a + do due to failure of one

element is the probability of failure of that element f(O)dO,

multiplied by the probability that N-1 elements survive 11 - g(0)1.

LThus, probability of this occurrence is the product of the

probabilities:

f(G)da fi - g(o)l N-1 (2.4)

L
I
L



I- I F(a) Probability of System Failure--

I 11

I-I

S2 V-1 V

I -g()... = Probability of Elemental Failure

I Figure 2.2. The Weakest-Link Model

IOn the other hand two breaks might occur simultaneously with the

L probability:

L f(Wdo'l -1 g(a)l I-2 (2.5)

L but such simultaneous events are very rare and can be neglected. Thus

[ the probability density function for the volume V consisting of N

elements is proportional to:

L

L

LL
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The elements that fail could be any one of the N elements, thus:

N-1
P (c) - Nf(O) f - g(o) (2.7)

N
For large N and small g, the Poisson approximation is good. (1 - g)
e -Ng which can be seen from the Taylor expansions of the left and

right sides:

I NN_) 2 3N N(N-l)g N(N-I) (N-2)

(l-g) N l-Ng + +. .......2 3

2 2 3 3
-Ng N g N g

e = l-Ng + 2 ....... (2.8)

also for large N, (N-l) - N to make:

N-1 -NgP(0) = Nf(C) (l-g)e (29)

L Again normalization predicts certain failure for an infinite stress,

giving:

L P(a)da = 1 (2.10)I o
Now the probability of failure function for the volume V comprised

L of N elements can be written from eq. 2.9. It has the general shape

0a

LF(P) - J P()do - N e-Ngf(c)dO (2.11)

0

L
L given by that of Figure 2.3
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0rC

I-

I

u  U 
m

I Figure 2.3. Cumulative Distribution Function, F(9)

Equation 2.9 gives the normalized probability density function

I and equation 2.11 is the basic failure probability for weakest link

statistics.

If we consider the experimental strengths obtained from a series

of specimens, we will find that there is a definite relationship

between the probability that a specimen will fracture and the stress

L to which it is subjected. This relationship is often called the

distribution f 'rnction of the strength. Every specimen has a unique

distribution function. In other words, the distribition function

L is dependent upon the size and design of the spe i 1. Many different

functions have been assumed for g, the failure probability for the

L elements. The one that is simple mathematically, agrees with a wide
variety of experimental data, covering not only material strengths

Ibut many other statistical data [12] and which appears physically

L

-- -----
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reasonable when the use of it in the above statistics is examined,

I is the Weibull distribution.

g(0)= (0 au C)+ :o>a 70

g(a) = 1 O u+ CO

g(o) =0 <o u (2.12)I
Notice that when 0 < au, there is no probability of failure.

This is the 3-parameter distribution. Some researchers assume o u = 0

because this leads to helpful simplifications in the application of

I Weibull statistics to experinents [18]. A typical distribution curve

I of strength [191 for au = 0 is shewn in the Figure 2.4. This lower

bound au on the strength of the element is also the lower bound for

the large volume . G must be found for the particular material and
u

for the failure mode being considered, by experiment. Because the

greatest value a probability of failure function can have for the

element is 1, (- 0 /O can not represent this function beyond a

certain value of a. That value is found from the equation:

g (0ma) = (a o =/ 1 (2.13)L
This will occur when a = a + O . therefore we have put g() = 1

for 0- a+o . Thus O0= a + %o is the greatest strength the
u 0u 0

[ elemental volumes could have if the Weibull statistics were valid

over the range ao-- a + 0 . However it is only the lower tail

of g that is effective in 'weakest-link' statistics, and it is

.... -_ .- _ .. .. ....-.... ........ ....._-.
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Figure 2.4. A Weibull Distribution of Tensile Strengths
(Source: Hudson, J.A. and Fairhurst, Charles,
"Tensile Strength, Weibull's Theory and A

General Statistical Approach to Rock Failure.")

reasonable that another simple power function could be fitted to

[the data in this limited region. Using £q. 2.11 and 2.12 now the

probability of failure for the volume V comprised of N elements

[ can be written as:

F a) 1 - exp N -- (2.14)

Since volume V is proportional to nuber of elements, N, Eq.(17) can

I be written as:

IF(G) 1-exp K*( M) (2.15)

Vu
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A simple example can show how only the lower tail of the

Idistribution function, g, is important. Consider a sample of
6

100*100*100 elements. Thus N = 10 . A typical value for the exponent

m is 5. Let us calculate the probability that failure for a volume

[in the lower 1/10 of the strength range of each element, stressed

uniaxially and uniformly. Inserting 0 = Ou + 1/10(co) into Eq. 2.14

I the probability of failure function, using V/vun=106 is:

F~)= 1 - exp -10 6

10 (2.16)

[ = 0.999954

[ Thus the probability of failure is almost 1 even though the

threshold stress was exceeded only by o/10. Consequently the shape

of f(0) and g(a) beyond a + %/10 is of little interest.

L
L
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r WEIBULL'S THEORY

[" Weibull's statistical theory is based on the 'weakest-link'

concept. The fact the term 'weakest-link' is used because the sam

r statistics apply to a chain whose strength is described as the strength

of its weakest link. In other sense, if N seemingly identical

specimens are broken in identically the same way, it is quite possible

that no two would fracture at the same load. Instead, they can show

a variability of 100% or more; however, the greater portion most

probably would fracture within a narrow range of loads, which leads

one to believe that the strength of a material might lend itself to

I statistical treatment. To relate the model of a chain to that of a

I tension specimen one must imagine a multitude of fibers, each acting

like a chain, it can be shown that the probability that a model

I specimen of this type will fracture at a certain load is a function

of its volume [20].

[As has been pointed out above, a specimen may be considered to

be made up of many fibers. Each of these fibers can be considered as

having its own probability of withstanding a load, but the probability

[ for the entire specimen will be the result of considering the individual

probabilities of all the fibers. Giving an example of bending

[ specimen, one-half of the fibers in the test volume will be in tension,

and the remaining fibers will be in compression. Weibull's theory

assumes that fibers in compression have a zero probability of failure.

L As a result, these compressed fibers do not contribute to the

probability for the entire specimen. Therefore, an entire half of the

L specimen is neglected in Weibull's consideration of the probability

L
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of a specimen's withstanding a bending load. But in considering the

probability of a specimen's withstanding a load, every fiber must be

considered.

I- Using this concept the Weibull distribution function for

predicting the probability of failure is expressed as:
Sa - a u )md

-ex4f- (u--Vm u 0

F() =V 0 un u

1(2.17)
V is the volume of the material under a uniaxial stress a. Generally

I a may be a function of the volume, in which case F will be a

function of the external loading paramreters.

The above Weibull distribution function describes the behavior of

many simple and important load carrying elements. For a tension

member under a constant stress state, the above distribution function

F can also be expressed as follows:

F(W) = 1 - expl-c(C - o u )  (2.18)

1
where c = m

Vun (CO)

and:

L Vg = Gage volume of the material

Vun = Unit volume of material

a = Applied uniform tensile stress

I F = Probability of failure

O = Threshold stress below which there is zero probability
u

~of fracture



m = Distribution constant or Weibull modulus

i c = Constant

Go= A free parameter needed to fit the function to the data

out m, arnd a0 (or c) are material constants.

Parameters Out m, and Oo are material constants in the true

sense and will not change with volume provided the Weibull function

is truly applicable to the material under consideration, and if the

materials used for small test specimens and for the structural

components are truly identical. However, a. or c is merely a

normalizing factor and is not otherwise related to any physical

J property of the material. The value of m is a measure of the strength

variability or scatter and it helps in determining whether the material

contains flaws of highly variable severity or similar geometry (21].

I Estimation of Weibull parameters from experimental data is a

very important sten in the determination of material characteristics.

[A large number of methods are in use to obtain Weibull parameters.

Heavens and Murgatroyd L22] in their work used the methods of

L linearization, direct curve fitting, and maximum likehood. The problem

L is complicated by the fact that no method can be proved to be best

under all circumstances. One can, for example, estimate the mean of a

normal distribution by taking the arithmatic average or by finding the

most frequently occuring value of the data. Davies [23] has suggested

L_ another method for the estimation of Weibull parameters. This method

Lequates the mean variance and higher moments of the distribution of
those of observed data. Another technique for finding these parameters

is based on the moment generating method and on rank-order theory [24,25].

L
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These results differ from those obtained by iteration methods whereby the

sums of squares of deviations are minimized as is the case of standard

least-square techniques. A detailed explanation of such methods have

been given in Appendices A and B. These methods can involve large

truncation errors and can be significantly less precise than comparison

with cumulative totals (Histogram Method for the Solution of Weibull

Parameters) of experimental data (Appendix C). Further, although the

least-square analysis method tends to emphasize deviation in the

experimental curve ordinates, incorporation of appropriate weights can

counter this effect while preserving the method's basic simplicity.

Another problem with these techniques Is that an assumption is

generally required for multiaxal stress states necessitated by the

uniaxial stress state under which data is taken. Many persons assume

statistical independence in the actions of principal direction stresses,

i.e., the probability of failure of an element is equal to the product

of probabilities of failure due to each principal stress [26, 27]. Under

three principal direction stresses the probability of failure is given

by:

F(o) = [F&o 1)] [F(0 2)] [F(oa3)] (2.19)

In another theory, Batdorf and Cross [28] and Batdorf [29, 30]

assumed flaws to be penny-shaped and neglected the shear on the crack

plane. Fracture of a crack was assumed to depend only on the components

of stress state normal to the crack plane. Freudenthal [21] and

Margetson [141 extended Welbull's uniaxial theory for stress assuming
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that cracks obey the assumptions of independence and shear insensi-

tivity. Evans [31] developed a theory for statistical analysis of

fracture under multiaxial states of stresses based on a critical

coplaner strain-energy release-rate fracture criterion.

Because a satisfactory and general treatment is not available in

the literature particularly for the three-parameter family, an analy-

tical method based on the same least-square method using an iterative

programming scheme is developed. The objective is to find those

values of Weibull parameters which make the theoretical curve fit the

experimental data best for the Weibull's materials subjected to

various states of stress. The methodology thus developed is illustrated

by applying it to two sets of man-made data (Chapters III and IV). Addi-

tional properties of Weibull statistical disLribution are given in

Appendix D, including a Goodness-or-Fit analysis test that supplements

topical material of this Chapter.



~CHAPTER III

r DEVELOPMENT OF SIMPLE TEST ANALYSIS CASES

Weibull's classical statistical theory includes two basic criteria

of failure; size and normal tensile stress. Within the validity of

Ithese postulates it is capable of describing failure for any type of
stress distribution, uniform or non-uniform, uniaxial or polyaxial.

Failure in an isotropic and homogenous material is more fully described

by the three-paraneter family than by the two-parameter family. No

I special allcwance is ,ade for nonuniformity of stress distribution other

than that imyilied in the integratior. procedure, Eq. 3.1 . Daniel and

Weil [32, 33] used standard specimen shapes to generateWeibull statistics

for some typical cases of bending loading conditions. The three-para-

met - family is developed -,ere - first for uniaxial case.

Uniaxial Constant Stress Fields and the Determination of Weibull[ Parameters

The Weibull distribution for a uniaxial stress field in a homo-

Lgenous isotropic material at a given uniform stress,CO is given by:

F(a) c o un
L F()

L
L
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F where: Vun - Unit Volume

Ou, 0, m - Weibull paramters which are associated with the

material and are independent of siz

For uniaxial constant stress, a is a principal stress, independent of

the volume so that:

~Vg ( Cy - ajuT

F~o lexp0

0(0 =-o (3.2)

substituting c = un 1

SF() = 1 - expI- c(w - u) }Vg (3.3)

I
The first solution procedure (the Log-Log method) is based on

linear regression method which converts the exponential type Weibull

distribution function into a straight line relationship by taking the log

[of the distribution function twice, thus:

nIrnd (1 -iF()) = kn(c) + m £n(a-a u) (3.4)

L This is now a linear relationship allowing a linear least-square

L analysis to be invoked for

Y = A+Bx

where A = Zn(c)

L and B - m (3.5)

L If Xi  = X (ai ) -- n (ai  au )

and Yi = Y (i) = in~n ( i )) (3.6)

L
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Si = 1, 2, 3 ... , n, where n is the number of data points. Then A, B

are constants, which must be determined, using the least-square crite-

I rion. The well known solution that minimizes the residual is:

(wi Xi2) (Z'i Yi) - (Ewi Xi) (Ewi XiYi)A 
DD

I= ( wi Yi Xi ( wi) - ( wi Xi) ( wi Yi)

(3.7)

I where:

(L'wi ) (sw. Xi  (Zwi Xi )

w. = Arbitrary weights ass_ned to data points

All surzations ar- i = ., ........ n.

In case equal weights are desired, the quantity E w. is replaced by n.' 1

The obvious difficulty with this analysis is that A and B are dependent

on Cf. To deterine the best o u value, an iterative programming

[scheme, computer program, UNIAX.FOR, was developed which recomputes
[ the residual sum of squares and chooses Ou minimizing this

function. Once a is known, m is determined as the slope of theu

[ straight line expression and c is found as exp(A) in Eq. 3.5

A slight modification this scheme can be used to redefine the weights

[iteratively to enulate any curve-fitting power law. This would

L allow the simplicity of the least-square solution to be invoked

while the weights are dynamically altered to (1) emphasize the leading

L distribution data or (2) de-emphasize errant points. Standard

least-square techniques have the disadvantage of emphasizing any point

away from the curve by squaring that deviation.

L

ohm-,
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Comparison Methods

As discussed earlier, other techniques exist to determine the

Weibull parameters from the series of data obtained from the

experimental tests. As an example, the results from the Moment

Generating Method (Appendix A) and the Newton-Raphson iteration

(Least-square) method are compared with those obtained from the Log-

Log Method.

Table 3.1 demonstrates that while a surprising discrepancy can

exist in the values of the Weibull parameters (c, m, Ou), the overall

probabilities can appear very close -- at least in the mid-range. In

the lower range, however, the probabilities can differ greatly.

Unfortunately, this range is of major interest in dealing with

materials where the test elamental volume is small in comparison to the

volume of the structure being modeled. (All weighcs were assumed unity

for this example.)

Pure Bending Field in a Rectangular Section Bar

In the application of brittle non-metallic materials, tests

utilizing bending stress distributions to failure on small, rectangular

cross-section bars are common and generally less expensive than uniaxial

tension tests -- particularly, in the case of three and four point load-

ing systems. In the latter case, the central portion of the bar is

subjected to a constant bending moment. Applying the Weibull expression

[32, 18, 34], where the stress distribution is variable and must be

integrated over the volume in bending, the probability of failure in the

pure bending section of a uniform prismatic beam, simply-sur )rted and

loaded as in Figure 3.1 is:
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F (G) exp~ vg -ci
Vur ao

Vg = .125 in. 3

a RAN. F(C) F F(o) F F(a) F (a)

iw

k.s.i. i M. ,;.lMe ; od N-R Method L.L.Method

7.55 1 0.0625 0.0",79 0.0362 0.0618
8.55 2 0.1253 0.0592 0.0653 0.0970

10.91 3 C.2375 0.1979 0.1913 0.2258
11.60 4 0.2550 0.2555 0.2453 0.2757

12.44 5 0.3125 -. 33S 0.3208 0.3429
13.50 6 0.3750 0.4414 0.4284 0.4353
13.65 7 0.4375 C.4573 0.4444 0.4489

14.00 8 0.5000 0.4937 0.4823 0.4808
14.75 9 0.5025 0.5716 0.5643 0.5497
14.83 10 0.6250 0.5798 0.5730 0.5571
15.96 11 0.6875 0.6902 0.6921 0.6583
16.41 12 0.7500 0.7304 0.7359 0.6966
16.60 13 0.81-5 0.7465 0.7535 0.7122
20.00 14 0.8750 0.9409 0.9575 0.9190
21.50 15 0.9325 0.9755 0.9866 0.9631

WEIBULI, PARAMETEES

C (in.2r- 3 k.s.. -m) 0.0007079 0.00002329 0.00003219

m (dimensionless) 3.0 4.03 3.76

au  (k.s.i.) 4.13 1.35 0.026
a (k.s.i.) 5.61 14.11 15.67

RESIDUES (dimensionless) 0.028309 0.026618 0.038729

Table 3.1. A Comparison of Methods of DeLermining Weibull Parameters
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b 2u (m ) a b  -CFO

1 (3.8)
where V = bLh

IP P
I 2 2

I k L-2k k

y

L 
b

Beam Loading

Pk

Extreme Fiber
Stress

O
b

LBending Moment Diagram

L Figure 3.1. Prismatic Beam under 4-Point Loading and Distribution
of Extreme Fiber StressL

L
L
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Both support and loading points are symmetrically positioned about

the beam center. The risk of rupture in the outer portion f the

specimen has been neglected in Eq.(3.8) but it is easily included.

Fig. 3.1 depicts this case with its gage volume equal to the pure

bending segment. The distribution of tensile stresses in central

portion of the test volume subjected to uniform bending is:

C; 2v 2°by(39

Ob  h h

for k--x ,(L-k)

where Ob' the extreme fiber stress at bottom, for a 4-point loading

is given as:

31 k

ab 1 ; P = Fracture load (3.10)

This distribution follows the same form of the case of a constant

uniaxial stress field and is solved by the same technique as with the

uniaxial constant stress field except that different constsnts

result when the log-log is taken in Eq. 3.8 instead of Eq. 212. The

programming scheme is given in BENDIN.FOR, Appendix D, thus:

Rnn (= n(V/2) -£n(m+l) + (m+l) 9n(o i -Oa
i-F(Oi )

- Zx.a i) - m Zn(o o) (3.11)

In this case;

A = Zn(V/2) - mn(re-l) - m

B = (te+l) (3.12)

with Ou and m estimated, Go is calculated from the Eq. (3.12).
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Pure Bending for a Circular Cross-Se-tion Rod or Tube

This case is similar to the one discussed earlier, except that

the shap- of the cross-section is circular . Davies [35] in his

I work observed that any minor defects incurred during manufacture

along the sharp edges of beam specimens of rectangular cross-section

that could influence significantly the probability of failure. Beam

specimens of circular cross-section have no sharp edges and are

therefore an attractive alternative geoietry.

Unfortunately the use of a simpler geometry specimen leads to the

complicaticn that no closeCi-form solution exists for the probability

formulation in bending.

The stress distribution for t:,e case of 4-point loading of a rod

is:

I Ny 2Pk
-- --- ; i x (L-k)

I or for a tube:

Z" y 2Fkya ... . ; k~~x-<(L-k) (3.13)

L I ( o- _J )

where P is the fracture load.

LFor the failure probability expression the integration is

[ conducted over the gage volum'e, v., which is in pure bending. Starting

from the integral form for the risk of rupture, Bn, Figure 3.2L
(T/ - dx dy dz

Go - ._ (3.14)
L- un



I 30

FP p

NA

-P T

+ ve / Pk

2
Bending Mo~ment

Figure 3.2. 4-Point Loading for a Circular Cross-SectionL Tube in Pure Bending

The limits of intcgration for x in Eq. 3.14 are 0 and (L-2k); thus:

Bn =(L-2k)cj ( y. dz dy (3.15)

A
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where c-=
Vun ('Jo ) m

The probability of failure is:

F(H) = 1- exp(-Bn)r The limits of integration for z and y in Eq. (3.15) will be different in

different cases. These cases are considered as below.

(1) Rod (Ri=O)

I (a) 0 <Yth< Ro

Yth is thepositive value of y for which

o = ou, thus:

CU I

I Yth M

Parts of the cross-section for which Y<Yth make no contribution

to Bn. For a fixed y such that YVythy the limits of integration for

z are obviously;

(Rj- y2) and + V(Ro- y2)

L Therefore,

L +V(Ro 
_ y )

En -L2)C dz dy (3.16)

Yth _/(Po2 _ y

L integration of Eq. (3.16) with respect to z gives:

L

L
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r
r

Bn 2(L-2k)c ( . u /-o - y 2 dy (3.17)

I Yth

(b) Po_:Yth ; In this case, obviously

Bn= 0

(2) Tube (Riz 0) : Three cases occur;

i (a) Ri>yt:-0 ; The expression for Bn becomes:

I [ p1 Ro
Bn = (L-2k)c L u  dz dy + au  dz dy

Yth Ri

(3.18)

For the first integral, the limits of integration for z, for fixed y,

[will be from
- y 2  to 2

and then from

22
+ V(i -_y to + (D-y2)

For the second integral, the limits of integration for z, for fixed y,

L will be from

L -y/) to + 2 2

L
L
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FPerforming the integration gives:

Bn =2(L-2k)c Ty2 r y2 dy

I Y2

Rom1

I + f (- u) / - y 2 dy j (3.19)

I (b) RiYth Ro

f Following the procedure used above gives:

M RRo 2 y(.0

Bn = 2(L-2k)c f (MI - Ou ) dy (3.20)

Yth

L This expression is identical to that in the case of a rod, Eq.(3.17).

In fact the case of a rod is obtained from this one by setting Ri = 0.

(c) Ro Yth ; Here obviously

L Bn = 0 (3.21)

L
L
L



CHAPTER IV

DESIGN OF THE BENDING EXPERIMENT

A major objective of this contract was to design tests and test

specimens that provided a large amount of information on fractive

strength of brittle materials at low cost. As such, tests

such as the uniaxial tension test were abandoned due to the need of

specially fabricated specimens and equipment where small strain to

failure ratios in ceramics are an important design consideration

[36).

A four-point test fixture and tube specimen geometry were

selected because:

1) A simple circular specimen geometry (solid or tubular)
could be used without excess concern of stress
concentrations of polygonal section specimens.

2) The geometry was an inexpensive one to emulate with
virtually all potential specimen materials. In many cases,
tubes are 'off-the-shelf' items.

3) Either smooth or rough surfaces could be tested.

4) Without great difficulty, necked down specimens if needed
could be designed to fit the same test equipment. The
need for such designs would be apparent if the frequency
of failures at the load points is high.

5) Four-point loading was selected over three-point loading
because it provided a large volume in the test region
subjected to a known stress field.

Figure 4.1 demonstrates the geometry used for the four-point load

test. The fixture components are:

A. Base

B. Specimen resting on ground rollers

C. Copper pads to reduce stress concentrations at bearing points
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D. 1. 25" - diameter alignment rods for stablizing upper load frame

E. Upper pivot arm with load roller and specimen grooved
rollers

F. Top guide block above which load is applied

Figure 4.2 is an assembled view with specimen in place. Figures

4.3 and 4.4 depict the dimensions and material details of the loading

frame system as finally employed. A load is applied at the top center

of the top guide block through a Tinius Olsen universal testing machine.

This machine is accurately calibrated for load although the rate of load

can only be approximated. Within the machine, the fixture of Figure 4.2

is placed; loading rates were approximately 40 pounds per second.

During the design and building of the testing apparatus, there was

a question as to what type of alignment mechanism should be used to

locate the outer (lower) and the inner (upper) specimen support points so

that no sliding frictional constraint would be imposed during deflection.

Stanley [18] did account for such an effect as it applied to a two-para-

meter Weibull test when the coefficient of static friction between the

specimen material and fixture were known. In this apparatus, the use of

rollers, made friction of minimal concern. Ideally, the use of two

'formed' pads on rollers (one on the top and one on the bottom) would

eliminate all non-self equilibrating frictional forces -- Figure 4.5.
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~Specimen

Detail Detail/

Pad -

Knife Edge

Figure 4.5. Pads and Roller Constraints
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Of further concern was to determine a specimen contact design geometry

so that no binding or specimen preload would be inadvertently imposed.

The problem was to determine whether the apparent contraction due to

bending at the lower points of support would offset the apparent elonga-

tion due to changes in slope at those same points. An approximation to

this problem would be to determine whether A moves closer to or away from

B. This would determine whether the geometry of Figure 4.6a or 4.6b

would be appropriate for the base of a testing fixture for the specimen

of Figure 4.3.

(a) (b)

Figure 4.6. Possible Test Support Geometrics

To determine whether distance AB lengthens or shortens, first the

contraction of the neutral axis must be found; it is given by:

L L
AL =f(ds - dx)ff ( 1+(yI) - l)dx. (4.1)

o0 0

for small slopes /y'/<<l, and 1 + y) (4.2)

L

AL Z j(y')2dx (4.3)

0

Thus, for a slender beam a contraction of any given span due to bending

would always occur. However, the change in slope of a beam under load

~Ib .~i~ -U -
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tends to place the lower points of the beam in like curvature as

indicated below in Figure 4.7.

a I

neutral axis Ya

6~a lb

Ymax YMax

Y (a) y (b)

Figure 4.7. Bending Causing Outward Movement of Beam Lower Surface

Thus, the expansion or elongation between a and b is:

L

Ymax [y1(b) - y'(a)]- f (Y')2dx (4.4)

0

at the bottom of the beam [yTnax] or at the total offset, Ro, wherever

contact occurs.

In the case of a hollow rod in pure bending for its mid-length L, we

have: L

(y ) 
2 2dx =(

24E212 (4.5a)
0

and

Y [y'(a) + Y'(b)] E (4.5b)

and one must check for- RoMoL M°L 3  > 0 (4.6)
EI 24212
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For the center span of a bar specimen in four-point loading, there

is no need to perform a calculation to determine the geometry of the load-

ing support as both the effect of slope and shortening of the neutral

axis dictate that the Figure 4.6a is appropriate for the overall shortening.

Four-point loading, the above equation is an approximation to the

change in distance between C and D of Figure 4.8 below provided X k

in length.

P

%y

C D

Figure 4.8. Bending Geometry and Notation

Thus, if Z £ then from 4.5 and 4.6:

o- ~ 1 Mo2 'El-7  24 E212

(4.7)

Here y is the distance from neutral axis to point of support and

Mo = Constant (4 (4.8)

The exact solution is obtained by substitution of the moment distri-

bution along the entire beam into (4.4) and integrating. In this case:
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El y1 (x) - _ (<x-m>2  < > <x-> - (M-)(m+;)]

(X X) i X>X0
where m L/2, in- £/2 and <x - xo> 2

0 if x<xo  (4.9)

Substitution of Ely"(x) derived from (4.9) and integration of each of

the resulting expressions leads to:

1 s~ -~2 ~' -

AL- )[32m -80m
3m +80mm -32m

]  (4.10)

for the beam in 4-point loading.

The slopes at the outer supports are given by:

y" G-m) fi 4El m 2

and (4.11)

yI(m) _ P (m2 _ 12)

Thus, if the specimen is supported at an offset of R from the neutral

axis, Figure 4.4a and b , then the restraining geometry Figure 4a should

be used if X>o, otherwise 4b should be used where:

2 2
X p(2 2 1 +. 85,

2)R O  P (32m s - 80mm +80m - 32i s) (4.12)4E-- - 0 El

Thus, the specimen loading design is chosen with attention to

several important details. By the use of bearings at the load points, the

effect of friction is minimized and proper definition of the loading frame

geometry (Figure 4.4a and b) eliminates a chance of superposition of

compression in the test. Finally, there is a complicated stress field in

I
I
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vicinity of the four loading areas. Machined surfaces on the test fixture

at such points and soft copper pads redtced this problem, particularly, near

the two inner contact points adjoining the gage length.
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EXPERIMENTAL DETAILS

Specimens and Material

All specimens used in the experimental work were tubes of circular

cross-section made of 99.8% Aluminum Oxide, A2.203, (998 Alumina, McDannel

Refractory Procelain Company, Beaver Falls, Pennsylvania, 15010) or of

mullite (MV33) from the same source. The test schematic appears below

in Figure 4.9. The tube geometrics for both materials are similar with

nominal values listed below Figure 4.9, and with eccentricities and

standard deviations given in Table 4.1.

Testing Procedures

The general procedure followed was ASTM Standards for rods, 1977,

Part 17, pages 104-11.

P

Bending Bar

SPECI!NEN Ro

L

k k

Figure 4.9. Testing Procedure for Bending Specimen

Observations:
Referring to Figure 4.9, general dimensions are in inches:

L -10

K 3.6

(L-2k) 2.8

.
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Ro - .4999 (Alumina)

Ri - .3091 (Alumina)

Vg . .6789 (Alumina) (under tension)

Ro - .5132 (Mullite)

Ri - .3661 (Mullite)

Vg - .5689 (Mullite) (under tension)

998 Alumina Mullite (MV33)

Mean and SD of Maximum
OD 1.0010+ .0021 1.0290+ .0065

Mean and SD of Direction
+ to Max. OD Direction .9985+ .0027 1.0236+ .0082

Mean and SD of Minimum
ID .6156+ .0203 .7276+ .0087

Mean and SD of Direction
+ to Min. ID Direction .6209+ .0234 .7367+ .0074

Table 4.1. Specimen Means and Standard Deviations in Inches
for Inner and Outer Diameters

N = 50 (Alumina) N = 50 mullite
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Analysis of Test Results:

The technique used in the computer program HOLLOW.FOR and DIN.FOR,

is an iteration method where the values of Weibull parameters, c, m, and

Ou are found by the minimization of residual errors in the experiment-

ally determined fracture probabilities compared to Eq. 4.10 through 4.12,

the probability of fracture F(a) is calculated by repeated applications

of Simpson's rule [37] to the integrals until a truncation error condi-

tion is satisfied. Residual error as calculated by the least-square

method is below:

2
Res(c,m,%u ) -wi{F(C) - F(G)} (4.13)

where F(a) ( i (Mean Rank Method fcr the experimental fracture loads].
n+l

This process perturbs values of c, m, and (U until the Eq. 4.13 is

minimized. This gives the final values of Weibull parameters for Alumina.

2-Parameter Family 3-Parameter Family

c = 0.403E-27 in. 21lbs. - m  c = 0.403E-27 in.2m-3lbs. - m

.391E-46 M2m-3 N-m .391E-46 M2m - 3 N-m

m = 6.20 (dimensionless) m = 6.20 (dimensionless)

au = 0.0 p.s.i./X[Pa au = 0.0 p.s.i./MPa

G = 26,212 p.s.i. C = 26,212 p.s.i.
0 180.73 MPa 0 180.73 MPa

Res = 0.02434 Res = 0.02434

Table 4.2:Weibull Parameters for Alumina 398
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The experimental results are given in Table 4.3. This table depicts

failure probability estimates via the two- and three-parameter Weibull

distributions in comparison to the mean rank experimental results. Table 4.4

depicts those specimens that failed abnormally and were not used for data

collection. The residual is minimized with the two parameter family, thus,

Table 4.2 entries are identical. Another illustration is given where the

Weibull parameters of Table 4.2 are assumed for a one cubic inch specimen

under uniaxial stress states. Thus, a one cubic inch specimen exhibits a

50% chance of fracture if stressed uniaxially and uniformly to 24.6 ksi.

Specimen Fracture Moment Rank F(M) Fracture Probability at

Designation Load M Failure Moment, M
F(M)

p, PK/2* i i/nl
(lbs.) (lb-in)

2-Parameter 3-Parameter

k2 1010 1818 1 0.04762 0.024402 0.024402

A1O 1210 2178 2 0.09524 0.074186 0.074186

A22 1365 2457 3 0.14286 0.15019 0.15019

A23 1395 2511 4 0.19047 0.16992 0.16992

k5 1475 2655 5 0.23809 0.23168 0.23168

A4 1510 2718 6 0.28571 0.26273 0.26273

A9 1610 2898 7 0.33333 0.36467 0.36467

A17 1620 2916 8 0.38095 0.37585 0.37585

A21 1730 3114 9 0.42857 0.50773 0.50773

A18 1745 3141 10 0.47619 0.52655 0.52655

All 1750 3150 11 0.52380 0.53284 0.53284

Al 1785 3213 12 0.57143 0.57705 0.57705

A16 1865 3357 13 0.61905 0.67674 0.67674

A14 1875 3375 14 0.66666 0.68881 0.68881

A25 1885 3393 15 0.71428 0.70076 0.70076

A6 1905 3429 16 0.76190 0.72420 0.72420

A12 1915 3447 17 0.80952 0.7358 0.7358

A3 2005 3609 18 0.85714 0.82948 0.82948

A15 2140 3852 19 0.90476 0.929235 0.929235

A19 2250 4050 20 0.95238 0.97311 0.97311

Table 4.3 Experimental Results for 4-Point Bending Test for

A Circular Cross-Section Tube of Alumina 998

• English system used since equipment is calibrated in pounds.
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Specimen Fracture
Why Rejected

Designation Load (lbs.)

A7 1770 Failed out of gage length

AA 1690 Testing Machine Failed Then
Pulsed Causing Shock

A13 1640 Failed Under Support

A20 1440 Failed Under Support

A24 1595 Failed Under Support

Table 4.4. Experimental Results For Rejected Alumina 998 Bend Test Specimens

Figure 4.10 demonstrates that the Alumina fracture curve is a relatively

broad one typical of experiments in which care is taken in the experimental

design. Frequently attempts to load brittle specimens in pure tension

result in an even broader apporent curve than the one of Figure 4.10 because

there are inherent small misalignments in the experimental equipment. These

aberrations produce stresses that reconfigure material exhibiting plasticity.

Brittle materals are subjected to stresses which only degrade by fracture

at a higher level than mean or macroscopic value sensed by the recording

equipment. The Weibull modulus is a recognized measure of the combined

uniformity of the experimental design and specimen strength predictability.

For this material and test, a value of 6.2 is higher than typical.
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The -sults of the mullite bend tests are given in Table 4.5 with

Table 4.6 representing the 22 specimens used to determine the para-

meters of Table 4.5. Table 4.7 is a list of rejected specimens of

which only two occurred.

The mean load at failure of the mullite at 843 pounds is signifi-

cantly below the corresponding load of alumina at 1,702 pounds. It

should be noted that even though the mullite is about one-half the

strength of alumina, the dispersion to strength ratio of both materials

is about the same.

As with alumina, the mullite tests were used to generate Weibull

parameter sets to produce the values below:

2-Parameter Family 3-Parameter Family
21- 3 -m

c = .725E-20 in. lbs. c - .725E-20 in. 2m- 3 lbs.-m
2m- $ -m -a-

(.6874E-34M N ) (.6874E-34Mm-N - )

m = 4.90 m = 4.90

au = 0.0 p.s.i./M Pa au = 0.0 p.s.i./M Pa

o = 12,887 p.s.i. OO = 12,887 p.s.i.
(88.856 M Pa) (88.856 M Pa)

Res = .0544 Res = .0544

Table 4.5: Weibull Parameters for Mullite (MV33)

Once again the two parameter Weibull distribution was found to minimize

the results as well as any three-parameter distribution.I
I
I
I
!
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Specimen Fracture Moment Rank F(M) Fracture Probability
Designation Load Failure Moment, M

F(M)
P* PK/2* i/n~l

(lbs. ) (lb-in)
2-Parameter 3-Parameter

M23 530 954 1 0.0526 0.0742 0.0742

M24 550 990 2 0.1053 0.0882 0.0742

M5 595 1071 3 0.1579 0.1270 0.0742

M19 710 1278 4 0.2105 0.2764 0.0742

M21 740 1332 5 0.2632 0.3272 0.0742
770 1386 6 0.3158 0.3824 0.0742

Lao 800 1440 7 0.3684 0.4407 0.0742

M9 810 1458 8 0.4211 0.4608 0.0742

M14 825 1485 9 0.4737 0.4912 0.0742
M17 830 1494 10 * * 0.5263 0.5014 0.0742
M22 830 1494 10 * * 0.5263 0.5014 0.0742
M18 850 1530 11 0.5789 0.5426 0.0742

M2 860 1548 12 * * 0.6316 0.5632 0.0742
4 860 1548 12 * * 0.6316 0.5632 0.0742

M8 860 1548 12 * * 0.6316 0.5632 0.0742

M13 875 1575 13 0.6842 0.5940 0.0742
M16 970 1746 14 0.7368 0.7756 0.0742

MII 1000 1800 15 * * 0.7894 0.8236 0.0742
M12 1000 1800 15 * * 0.7894 0.8236 0.0742
M7 1050 1890 16 0.8421 0.8896 0.0742
M6 1100 1980 17 0.8947 0.9372 0.0742

M3 1130 2034 18 0.9474 0.9575 0.9575

• English system used since equipment is calibrated in pounds.

•* Multiple entries treated with proportionately higher weights.

Table 4.6: Experimental Results for 4-Point Bending Test for a
Circular Cross-Section Tube of Mullite MV33

I
I
I
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Specimen Maximum
Designation Load Remarks

M14 840 Fractured out of gage length

M20 1050 Fractured out of gage length

Table 4.7: Experimental Results for Rejected Mullite MV33
Bend Test Specimens

The graph for the Mullite parameters corresponding to Figure 4.10

for Alumina appear as Figure 4.11. The significatly lower strength

of mullite can easily be demonstrated between the two materials when

Figures 4.10 and 4.11 are compared.

I
I
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Examination of Fractured Specimens

Some alumina specimens, Figure 4.12, failed through a single crack

wholly within the gage length while no mullite tubes failed wholly in a

single crack pattern.

The least complex crack surface of a mullite specimen was compound

where 1/2 inch wide sector was separated, Figure 4.13, even then,

failure was wholly within the gage length.

The mullite failed in every case with more splintering and cnip-

ping than the alumina. Thus, all mullite specimens were taped for

safety and retrieval of splinters. While Mullite fractures were more

complex, the alumina specimens exhibited the most unpredictable

failure geometries; they ranged from the simple fracture of Figure 4.12

to fractures where a variety of compound shapes occurred designated by

multiple tension compount fracture (Figure 4.14), multiple compression

compound fracture (Figure 4.15), and two section fracture with a

compression axial split (Figure 4.16). In no cases, however, did

noticeable spalling or chipping of other than material powder occur.

On the other hand, the mullite samples all exhibited a smaller

variety of fracture patterns uith apparent single fracture initiation

locations on the tension side with eminating ray-like cracks toward

the compression side similar to Figure 4.15 in the alumina tests.

These mullite figures are listed in increasing order of complexity,

Figures 4.17, 4.13, and 4.19.

In Figures 4.13 and 4.18, there is clear evidence of mullite spall-

ing in the compression regions. Of course, strain energy densities

were highest on the upper and lower regions of the specimens.
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While it cannot be seen clearly, many of the alumina specimens

have crack bifurcations in regions where there is an abrupt change in

crack path. For example, in Figures 4.14 and 4.16 where the 'major'

crack path has propagated extensively, the crack has not opened through-

out the material. In strong light specimens 4.14 and 4.16 reveal these

bifurication points and hidden cracks near the neutral axis plane again

where the visible cracks abruptly change direction. No such phenomenon

was detected in any of the mullite specimens although they were more

opaque.



Figure 4.12. Alumina Specaw~n ',- After FnaLrure

Fi:-ure 4.13: Mullitte Spec! i C 121 Ifter Fracture



Fi~.ure 44.14. Nuitipie I-ell".0; op ou rracture o

Yi-' ure 4.13. llNultiplc Com~pres;sion Ccp--ounc Fracture oci



l-iure 4.1.6: Two-Section Fracture with e Corossior- Axial;
S'l.it in z..aIunina SPerime Aln

F'ifjure . .- Mullite Bend -Specirnen Ml19 Multirle Fracture



Figure 4.18. Mullite Bend Specimen MI I Multiple Fracture

Figure 4.19: Mullite Bexvd Specimen M20 Multiple Fracture
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CONCLUSION

While it was originally expected that a three-parameter Weibull

family would be required to describe adequately the probability of

fracture in both Alumina and Mullite, it was found that the 2-parameter

family produced the same minimum residual sdm of squares. As a result,

the parameter family was disregarded in favor of the simpler distribu-

tion for all bending tests.

The mean failure load of the Alumina tubes was 1702 lbs in four-point

loading vs 843 lbs for Mullite. That is equivalent to a stress level of

170 MPa (24.6 ksi) for Alumina and 83.4 MPa (12.1 ksi) for Mullite in

a one (1) cu.. in. specimen of uniform stress at a 50% chance of failure.

While it is appropriate to employ specimens designed to be operated

on precision aligned axial tensil testing equipment, the use of these

machines and costly specimens have no advantages over properly designed

four-point loading tests. Few specimens demonstrated cracks or crushing

near the points of supports.

While the mathematics required in the minimization of residuals for a

least square method solution is not closed-form in the case of rods or

tubes, the ttc.lng simplicity compensates for the minor problem. It is,

however, true that the computer model producing the Weibull paramenters

could be made to operate more efficiently and automatically.

In order that various hypotheses can be tested in dealing with

failure from multiaxial stress states, several stress tensor ratios

must be employed. The subsequent or follower contract report

N00019-79-PR-RL218, will address parallel work in torsion.
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APPENDIX A

RELIABILITY PREDICTIONS BASED ON TEST SPECIMENS

In the circumstances, when it is not practical to investigate the

integrity of a component through tests on small models, the reliability

predictions can be based on data obtained from test specimens. This

method requires the development of an approach, where a combined-fracture

stress theory is needed to relate the behavior of a unit volume under

a complicated stress state to the behavior of the test specimen under a

controlled stress state. Development of such an approach is far from

complete; however, based on a series model, Barnett et.al. (26) proposed

a simple theory which is often used to predict behavior of a volume

subject to a general stress field.

If a1 , 02f and a3 are principal stresses acting on a uniformly

stressed unit volume Vun, the reliability of the volume is:

S1 - F(a) [i- F(O 1 )] [i - F(0 2 )] [I - F(Y3 )] (A.1)

~where;

1 - F(a) = reliability of the volume

[F(O) = The fracture probability of a unit volume under a pure

tensile stress a

LEq. (1.1) can be used for any uniformly stressed basic unit for

which F(a) has been established, including, for example, infinitesimal

volumes. It is however an assumption of independence of effect due to

[the stress tensor components actions.
The simplest way to determine the reliability-strength trade-off

L is to test full-scale prototypes, where neither a stress nor strength

L
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analysis is required, but the drawback is expense. The testing of

scale models costs less and still avoids the need for stress analysis.

However this technique requires a knowledge of strength-volume relation-

sip. Since neither of these approaches provides much basic information

about the material being tested, therefore subsequent designs with the

same material must be developed from scratch.

IThe most sophisticated approach - the statistical theory of which

is explained above - requires not only data from test specimen

requires a detailed stress analysis. Small, relatively inexpensive

I specimens are tested to determine the reliability characteristics of

small volumes which further leads to predict prototype behavior. The

entire analysis requires six steps.

1. Obtain the tensile-strength distribution FVg () using a

tension specimen with gage volume V9 .

2. Perform a complete stress analysis of the component.

3. Divide the component into n convenient volumes, V,1 V 2 1 ..... Vn -

Each volume should be sufficiently small so that it contains

approximately a constant stress state.

4. Determine the 'worst' stress condition in each volume V andI_
assume that the corrosponding principal stresses Ci, 021 and a,

L act uniformly throughout the volume.

5. Determine the reliability of each volume (1-Fv), by first

L finding the reliability of the gage volume under the principal

stresses through the application of Eq. (1.1);

L
L-Vg9 (CO1 , 21 o 3 )] = [l-FV (a)] [-FV (02)] [ lFV (03)]

L g (A .2)

L

6- -- ---
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7

Then scale gage-volume reliability to find (1-F ) by using

F the Eq. (1.3)

(lF. 1F Vj/Vg (A3)
! VI-V.) j = ( -Vg)

6. Use Eq. (1.4) which is based on weakest-link hypothesis, to

establish the reliability of the entire structure, (l-F(a)

from the reliability of the volumes Vj.

n

I-F(a) (l-FI) (1-F 2 ) ....... (I-F n ) = (1-F) .4)
j=l

n
1-F(a) E (1-F v ) (.5)

j=l Vj

I

Eq. (1.3) is based on the extreme value statistics, which furnish

with an important necessary condition for a series material that

I does not require the specific forr of the distribution function nor

a knowledge of the combined-stress theory appropriate for the

material. Specifically, when the loading and geometry 
of two different

j size components are similar, their distribution function F(O) must

scale according to the following relationship when the 
material obeys

the series model.

1 - F 2 (O2 ) = 1 - F (a 1 )

where Fi is the fracture probability of the ith structure, 
Vi is the

volume of the ith structure.

.Ii
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APPENDIX B

Newton-Raphson Iteration Method for Matrix Equations of

Weibull Parameters

The residue equation is:

2

R(c,M,au)- Wji - 1 xp{-C(7a ) GO (.

R = Residue as function c, m, and awhere u

Fi- Data Points

Simplification of Eq. (2.1) takes the form of:Z U, eU - -u -

Ri-2 Z wi  e-u1 + e +Fi2 p2)

where Fi = (1 - Fi)

u i = c(Gi - Ou ) m

Minimization of residue R, requires that partial derivatives

uf Eq. (2.9) with respect to c, m, and au be zero.

6R n i 2ui m

- 2 E wi  Fie - e ( i - Cu )
6c i=1 (B. 3)

6R 2 i  -i e u i  ZU, M
-- e c fn(C i -O u) (Ci - au ) (.4)

6mD i=l

n { u Zui m-1

6R ur--R a -2 E wi  Fie -e c M (Gi  a u

6 u i-( - (B.5)

I
rn-
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Again, a Newton-Raphson solution of c, m, and ou requires that

the partial derivatives of Eqs. (3.3), (B.4), and (B.5) with respect

to c, m, and ou should be satisfied. The following is the desired

matrix expressed in a symbolic form.

R,c R,cc Rcm R,cOu  6c\U

R,m R,mm R,rC 6mu

\\

R,Ou ROu au  6%u
L J L L _ _ •(B.6)
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where in condensed form

ui - c ( i  c u ) 31m

SI 
- ui  -2Ui 6 ui

R,Vj = 2 w F.e -e 6 V

R,jvkm2 wi F ie - e2ui :uV +
6vj6v k!

2ui -u i  6ui 6ui

E w i I 2 e  
- Fie iI 6v 6 v k  

(B.7)

v. =one of {c, m, Cu }  j = 1, 2, 3.

Solution of this matrix gives the corrections c, m, and au to

initial guesses of c, m, and cu. Refined values of Weibull parameters

are obtained by adding these correction values to the initial guesses

and repeating until the values converge (computer program NEWTON.FOR).

Unfortunately, this method is highly unstable and frequently

only converges if the initial values are within t 5% of the correct

values. The problem, therefore, is to produce very accurate initial

guesses easily or abandon this technique as a less useful one. One

mechanism albeit not entirely successful of selecting initial values

Iis listed below;

Initial Prediction and Stepping Method

In this method a set of three points A,  B, and B1is chosen

[for the analysis of Weibull parameters. We let

[
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C A C( B aE C(F) cr14 (B. 8)

[ where n is 'a multiple of 4.

1

FE

C A B C -

IFigure B.1. Selection of Three Data Points

I This leads to a technically simple approximation for c, m, and au.

Expressing the Weibull distribution for point CA ,we obtain

FA 1 exp I-c (CA Gu) I(B.9)
and similar expressions for points CE, and Cc.

I Taking In In we have:

in c+ min (a C u) =KA (B. 10)

Isimilarly for points CEB and C we have:

[In c + m In(03 B OU) =KB (B.11)

in c + mn(C O =KC (B .12)
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where

Ka = in(n and similarly for KB and KC .

F Simplification of Eqs. (2.10), (2.11), and (2.12) gives:

m n -( -- au KA - KB (B.13)

/ GB - u

m Cn - J -- K KC (B.14)
c ou

I
by eliminating m we obtain:I

I F(Gu) =y na + Ln u.15)Ou -C B  Yu CYB

I
where

KA - 'B

I Thus the problem is reduced to finding au of Eq. (B.15). The

I Newton-Raphsmn iteration method for the solution of parameter au requires;

j F(au)

aUn= GUo FI(Gu) (B.16)

where

w y Un - New value of au after each iteration

I
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aUo - Preceding value of au used for reiteration

- F'(Ou) = First derivative of F(O u)

Expansion of Eq. (2.16)takes the form of:

yn G U. -:'A + in a Ca n u a O Ou - O B aUo  OH

1cU~E [ Y uI C A~ + C C

(B. 171

solution of the above expression gives the value of Cu by iteration.

Once ou is determined, the values of c and m can be found from Eqs.

(B.1O) and (B.11.

Unfortunately, it can be shown that solution of Eq. (B.17) can

lead to au which generates complex c and m even for 0 = CA, B , or CC' if

real probabilities are generated. When real c and m are found, it is

still often that the Newton-Raphson process does not converge, further

improvement in solution technique is needed. The iterative technique

is included as a computer program in Appendix E, program 5, NEWTON.FOR.

I.-
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U0  Preceding value of Ou used for reiterationj F' (Ou) -First derivative of F(ou)

Expansion of Eq. (2.16)takes the form of:

--
a -aO

a yUn au - A O C
u a 1 a auoaAa

I (B.171

solution of the above expression gives the value of au by iteration.

Once Ou is deternined, the values of c and m can be found from Eqs.

4B.1O) and (B.13.

Unfortunately, it can be shown that solution of Eq. (B.17) can

lead to Ou which generates complex c and m even for a = aA, aB, or Oc, if

[ real probabilities are generated. When real c and m are found, it is

still often that the Newton-Raphson process does not converge, further

Iimprovement in solution technique is needed. The iterative technique

is included as a computer program in Appendix E, program 5, NEWTON.FOR.

I
I
1

I.-
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APPENDIX C

The Histogram Method for the Solution of Weibull Parameters

Three-parameter Weibull distribution is expressed as:

m

F(C) = 1 - i -c(o - au) I (c.1)

The function F(a) can be determined in several ways. In the mean

rank method n tests are conducted and the data is ordered by increasing

fracture stress. This yields a sequence of numbers for 01 4 ..... < <

The estimation of cumulative distribution function, F(a), is then given

by

i -

F(a i ) = ; also F(Oi) = Fi (C.2)

A more sophisticated statistical treatment [38] known as the Median

Rank method uses the estimator

S i - .03F. = (C.3)
1i n + .04

This formula is an approximation to Median Rank values from the

imcomplete Beta function.

Other techniques exist which also seek to convelt a set of data,

i.e., a number of specimens with a number of fraction values to a

probability of fracture table. Basically this involves the integration

of a histogram, Figure C.l,or frequency distribution P(O), to obtain the
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r
[probability of failure curve.

P(G

Cz4 0

p .

stress Level Stress Level

Figure C.l. Probability Distribution

IThus P(in the range ak  to ai !

Oi+ ail The Number of failures in the range oi to 0i+1

2 1n

Is 0

And once P(a) is known,

F(a) J P(a) dO = fP(a) do 1C.4)

040

Numerous techniques exist to convert this histogram information to a

probability of failure curve, it is assumed then that F(a) will be

known for a variety of data points, a so that a table may be devised

for a versus F Thus, it is required that values of the distribution

constants be determined for the F(O) curve.

A typical example below, Table C-l, shows how to obtain a

2 n
And~.... .once .~ skon
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failure probability curve from the discrete 
element (histogram)

I approach.

Stress Rank Probability of Failure F(O)

(ii F(Ci) vs ai

10.02 1 0 0 0 a < 10.02
12.30 2 1/12 0.083 10.02 0 < 12.30

I 14.76 3 2/12 0.166 12.30 a <14.76
15.30 4 3/12 0.250 14.76 ! <15.30
16.24 5 4/12 0.333 15.30 C <16.24
16.94 6 5/12 0.416 16.24 a <16.94
17.20 7 6/12 0.500 16.94 a <17.20
17.82 8 7/12 0.583 17.20 O <17.82
18.40 9 8/12 0.666 17.82 O <18.40
19.60 10 9/12 0.750 18.40 -Y < 19.60I<
20.15 11 10/12 0.833 19.60 0 <20.15
22.40 12 11/12 0.916 20.15 !O <22.40

II
Table C-1. Stress Level vs Probability Failure

The histogram and the cumulative distribution function of the data

r presented in Table C-I is displayed as follows:

9

Histogram

4. 5
0O

z 3

1

0 2 4 6 8 10 12 14 16 18 20 22

Stress Level, a

Figure C2. Cumulative Frequency Distribution of Table C.1 data



F

81

F

F

0) 1.000
$4

0.833
~m

F(C) = 1 - expI-c(O-C1)
o 0.666

-4
-' 0.500

0.333
$4

0.166

0
0 l I I I iY I II I '

0 2 4 6 8 10 12 14 16 18 20 22

Stress Level, a

Figure C3. Probability of Failure for the data of Table C-i.

According to least-square analysis the residue equation expressing

the sum of the square of differences between data and predictive

equation must be minimized. The residue equation with weights where

the cumulative integrated distribution is assumed,Eq.(C.4) is given

by:

22.4.0

Res(c,m,cu) f w(O) IF((C) - F(C)I do (C.5)

10.02

where w(W) = weight per unit stress.

Expansion of Eq. (3.5) takes the form:

12 .30

Res(c ,mU) = /wca)fj- F(o) 2 do +

10.02
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14.76 22.40
w6 {?-F(a)1 2 do + ........ + 220 12_ F(O) 2 dO

12 12
12.30 20.15

(C.6)
or in summation form:

n-i 2
Res(c,m,a u) = w(ai) F (0 i ) - F(0i) da (C.7)

i=l

where w(a) is assumed consta-t in each range expressed in Table C-i.

The solution of Eq. (C .7) determines the values of three Weibull

parameters c, m, and u. However this method is very cumbersome and

sometimes the predictive equation for F(a) is not of closed form as

is the case of 4-point bending hollow tube.
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APPENDIX D

Statistical Properties of Weibull Distribution

The three-parameter Weibull distribution in its cumulative form

is given as

F (a ) - 1 - p 

( 
/

For the case = 0, the Eq. (4.1) takes the form of two-parameter

Weibull distribution given as:

F(a) = 1 - exp - (D.2)

In this case the fracture can take place at any positive value of

the fracture stress.

Since the three-parameter distribution can always be converted

to the two-parameter distribution by a simple linear transformation,

the two-parameter Weibull distribution is used to illustrate the

properties of the Weibull distribution.

The probability density function (p.d.f.) is obtained by differ-

entiating the Eq. CD.2).

P(o) = _o ex - (D.3)

taking scale parameter, a = 1, the Eq. (4.3) can be written as:

M-i m
P(a) = m (a) exp(-(a)) CD.4)

A graphical plot of the Eq. (D.4) for different values of

shape parameter, m, to show the various forms of the probability
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density function has been shown in Figure D-1.

5- The scale parameter ao is used to locate the Weibull distribution

along the a axis. Assuming a - a into the cumulative distribution

function, Eq. (D.2), it can be easily shown that for any Weibull

distribution the probability of failure prior to a is equal to 63.2%
r 

0

and independence of the shape parameter, m.

F(aao) = 1 - exp -( °m

m
= 1 - exp(-l)

= 0.632

From the above fact it is quite clear that the scale parameter,

0 will always divide the area under the p.d.f. into 63.2% for all

values of m.

U0

m=

I0
o

Figure D.i. The Weibull Distribution for Different Values of m
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A Goodness-of-Fit Test for the Weibull Distribution

When dealing with Weibull subjected experimental data one often

faces a question as to whether the data fits the two-parameter or

three-parameter Weibull distribution. The simplest technique one can

think of, is to transfer the two-parameter Weibull distribution into

a linear relationship by taking the log twice and plotting the data

on a graph paper. If the resulting shape of Weibull plot is a straight

line then one can easily decide that the data follows 6 two-parameter

Weibull distribution. Failure to get a straight line plot, and

especially when the plot curves downwards at the lower end, gives

the indication that the experimental data follow a three-parameter

Weibull distribution. In this case the value of the threshold stress

Ou must be calculated to get a straight line plot.

Mann et.al. [391 developed a goodness-of-fit test especially for

the Weibull distribution which is expected to be more powerful than

any of the general goodness-of-fit tests.

The null hypothesis in this case is that the experimental data

is two-parameter Weibull distribution. If the null hypothesis is

rejected, then other distributions including the three-parameter

Weibull distribution, should be considered. The mathematics of the

goodness-of-fit test is quite simple and is given as follows:

Let a,,f, ....... ,r represents the first r ordered failure

stresses resulting from placing n specimen on test and truncating the

test at the time of rth failure (r-n).

1
I
I



F
Defining EKi as EKi " Ln(Oi ) for i1-,2, ...... ,r., the test

F statistics is given as:

r-l r(EX EX~)

i=(r/2)+l "M

r-l r (EY-i+l - ErK) (D.5)
I i ,, -

where (r/2) denotes the greatest integer r/2; for example, if r - 9,

then (r/2) = 4. The value for Mirs are found in 138], along with the

critical value for S.

rr

I
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UNIAX.FOR

C THIS PROGRAM IS FOR THE UNIAXIAL CONSTANT STRESS FIELDS
C PROGRAM WEIBUL THREE PARMETERS
C* THE PARAMETERS ARE C, M, AND SIGU
C THIS PROGRAM COMPUTES ALL PARAMETERS BY
C LINEAR REGRESSION METHOD. FOR NOTATION SIGU-SIGO
C THIS PROGRAM HAS BEEN EXECUTED ON DEC-1060 SYSTEM

DIMENSION X(20),F(2C^),W(20),EK(20),P(20),WN(20),WM1(20)
WRITE(5 ,1o)

10 FORL'AT(XI 0ENTER DATA FILE NO.*)
READ(5,*) ND
READ(ND,*) N

C ND=NUMBER OF DATA FILE
N-NUMBER OF WEIBUL POINT PAIRS

C W-ARBITRARY WEIGHTS
X-FRACTURE STRESS VALUES

READ(ND,*) ((X(I),F(I),W(I)),I=1,N)
DO 1 11I,N

1 WRITE(5,20) (I,X(I),F(I),W(I))
20 FOR.%AT(IX,*X(I),F(I),W(I) FORI-0,I2,3(IX,E12.6))

DO 2 1-1,N

2 CONTINUE
NN-5
JK=O
INT=10
RESO-I.*E+30
BEG=-.99*X(l)
EMD=.99*X(iL)

98 H-(EMD-BEG)/FLOAT(IZ;T)
DO 95 10O,INT
SIK=BE-+FLOAT( I)*H

DO 96 11-~1,N
96 P(II)-ALOG(X(II)-SIK)

CALL LIN(W,WN,P,EK,N,SIK,A,B,RES)
IF(RES.CT.RESO) GO TO 95
RE.SO=RES
SIGU-SIK
AG-A
BG-B
J21

95 CONTINUE
WRITE(5,80) AG,BC,RESO,SIGUSSIGO

C REDIFINE EMD AND BEG AND CONTINUE
IF (JK.GT.NN) GO TO 97
JK-JK+l
IF (J.EQ.O) J-1
IF (J.EQ.INT) J-INT-1
EMD-BEC+FLOAT(J+1 )*H
BEG-EMD-2 .*H
RESO"RE S
SICO'SIGU
GO TO 98
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80 FORMAT(2X,AGu,El2.6,7X,BG-s,E2.6/,2X,RESO-.,El2.6,
1 5X,@SIGtfr,E12.6,5X,5Ic-0-08 E12.6)

C EC,ESI-0, AND EM ARE THREE WEIBULL PARAM4ETERS
97 EC-EXP(AC-)

ESIGO-SI-U
EM-BG
VOL-1

C* VOL SHOULD BE CHANGED AS PER PROBLEM
VOLUN-1
SIc.0=(1./(VOLUN*EC) )**(1/EM)
WRITE(5, 100)EC,EM, SIGU, SIC-0

100 FOR!MAT(/,2GX, 0 WEIBUL PARAMETERS ARE 0 ,//,2X,
1 *EC-*,El2.6,5x,0EM=0 ,F8.2,5X,'SIGU= 5,E12.6,5X,*SIC0O.*E12.5,/)

C CALCULATED PROBABILITIES ARE LISTED AS BELOW

DO 130 111N
130 P(II)ALOG(X(II)-SIGU)

CALL LIN(W,W\M,P,EK,N,SI-U,AB,RES)
DO 108 1=1,N
PCAL=1.-EXP(-(VOL/VOLUN)*( (X(l).ESIGO)/SIcG0)**EM)

108 WRITE(5,110) FCALF(I),W(I)
110 FORL',xT-(1X, 0 PCAL,F(I) 5 W(I)-*,El2.6,2(lXE12.6))

STOP
END

C SUBROUTINE LIN CALCULATES VALUES OF CONSTANTS A AND B
SUBROUTINE LIN(W,WN,PF, EKSN,SIGlAB, RES)
DIMENSION W(20),P(20),EK(20),WN(20)
C~o.
D-0.
E=0.
G-0.
H=G

DO 4 1-1,N

A-((E*G-D*H)/(DEN))
B-((C*H1-D*G)!(DEN))

C THE CONSTANTS A AND B ARE KNOWN
C NOW FIND RESIDUE

DO 5 1-1,N
WN(I)-(A+B*?(I) )-EK(I)

RE S-'S'JV1
RETURN
END



EX UNIAX.FOR
FORTRAN: UNIAX 91

LIN

LINK: Loading
[LNKXCT UNIAX Execution]

ENTER DATA FILE NO.34

X(1),F(1),W(t) FOR!= 1 .755000E+01 .625000E-O1 .100000E+GI
X(i),F(1),W(l) FORI= 2 .855000E+01 .125000E+00 .1O0000E+O1
X(1),F(I),W(I) FORI= 3 .109100E+02 .137500E+00 .100000E+O1
X(!),F(I),W(1) FOR!= 4 .116000E+02 .250000E+00 .100000E+O1
X(1),F(I),W(!) FOR!= 5 .124400E+02 .312500E+00 .100000E+O1
X(1),F(1),W(1) FORI= 6 .13530GE+02 .375000E+00 .1O00O0E+O1
X(1),F(I),W(I) FORI= 7 .136500E+02 .437500E+00 .100000E+O1
X(I),F(1),W(I) FORI= 8 .1l0000E+02 .500000E+O0 .100000E+01
X(1),F(I),w(!) FORI = 9 .l7500E+02 .562500E+00 .100000E+02
X(l),F(I),W(1) FORI=1O .148300E+02 .625000E+00 .100000E+01
X(!),F(I),W(!) FORI=11 .159600E+02 .687500E+00 .100000E+O1
X(I),F(I),W(1) FORI=12 .164100E+32 .75000E+00 .10000E+O1
X(I),F(I),W(I) FORI=13 .166000E+02 .8125G0E+00 .100000E+01
X(l),F(1),W(1) FOR!=la .200000E+02 .8750GOE400 .100000E+O1
X(I),F(I),W(I) FORI=15 .215000E+G2 .9325G0E+00 *100000E+01
AG=-. 103 722E+02 BG= .377017E+01
RESO= .682176E+00 SIGU= .0OO000E+O0 SIGO= .000000E+00
AG=-.103722E+02 BG= .377017E+01
RESO= .682176E+00 SIGU = .44703"E-07 SI-O= .0O000E+O0
AG=-.103722E+02 BG= .377017E+01
RESO= .682176E+00 SIGU- .558794E-07 SIGO= .47035E-07
AG--.I13A6GE+G2 BG= .376275E+01
RES,)= .682174E+00 SIG'U= .239185E-01 SIGO= .558794E-07
AG=-.10316OE+02 BG= .376275E+01
RESO .682174E+GO SIGU= .239185E-01 SIGO = .239185E-01
AG=-.103440E+02 BG= .376217E+01
RESO= .682173E+00 SIGU"= .258319E-01 S!CO= .239185E-01
AG=-,103436E+02 BG- .376207E+01
RESO= .682173E+00 SIGU- .261189E-01 SIGO = .258319E-01

WEIBUL PARLMETERS ARE

EC- .321973E-04 EM=  3.76 SIGU= .261189E-01 SIGO- 0.15634E+02

PCAL,F(l),W(I)= .6'81403E-01 .625000E-01 .100000E+O1
PCAL,F(I),4(I)= .9704lE-o1 .125000E+00 .100000E+O1
PCAL,F(I),W(I)= .225875E+00 .137500E+00 .100000E+O1
PCALF(I),W(I)= .275760E+00 .250900E+00 .100000E+O1
PCAL,F(I),W(I)= .342910E+00 .312500E+00 .100000E+O1
PCALF(I),W(I)= .433352E+00 .375000E00 .10G00OE+O1
PCAL,F(I),W(I)- .448912E+00 .437500E+00 .100000E+01
PCAL,F(1),W(I)= .480830E+00 .500000E+O0 .100000E+O1
PCAL,F(1),W(l)- .549775E+00 .562500E+00 .100000E+02
FCAL,F(1),W(I)= .557114E+00 .625000E+00 .100000E+O1
PCAL,F(1),W(1)= .658394E+00 .687500E+00 .100000E+O1
PCAL,F(I) ,W(l)- .696612E+00 .75GQ00E+O0 .100000E+01
PCAL,F(I),W(1)- .712237E+00 .812500E+00 .IOOQGCE+O
FCAL,F(1),W(I)= .919005E+00 .875000E+00 .100000E+O1
PCAL,F(I),W(I) .963132Z+GG .9125GE+O0 .IGOOOE+O1
STnP

END OF EXECUTION
CFU TIME: 1.69 ELAPSED TIME: 2:13.53
r YTT
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BENDIN.FOR

C THIS PROiLRAM IS FOR THE 4-POINT LOADING PURE BENDING STRESS
C PROGRAM WEIBUL THREE PARAMETERS
C THE PARAMETERS ARE SIGMAO, M ,AND C
C THIS PROC-RAN COMPUTES ALL PARAMETERS B~Y
C LINEAR REGRESSION METHOD. FOR NOTATION SICMAO=SIG0
C THIS PROG-RAN HAS BEEN EXECUTED ON DEC-1060 SYSTEM

DIMENSION X(20),F(20),W(20),EK(20),P(20),WN(20),WMC(20)
WRITE(5,10)

10 FORM.AT(1X,0ENTER DATA FILE NO.0)
READ(5,*) ND
READ(NDI*) N

C ND=NULNBER OF DATA FILE
C N-N'MBER OF WEIBUL POINT PAIRS
C WmARBITRARY WEIGHTS
C X=FRACTURE STRESS VALUES

DO 1 11I,N
1 WRITE(5,20) (I,X(I),F(I),W(I))
20 FORl.MAT(lX,oX(I) 5F(I),W(I) FORI=0,12,3(lX,E12.6))

DO 2 1=1,N
EK(I)=ALG(AOG(./(.-F())))+ALO-(X(I))

2 CONTINUE
C V IS THE VOLUME OF TEST SPECIMEN

V-1.0 !SHOUD BE CHANGED AS PER VOLUME
NN=5
JK=0
I N T= -1 -
RESO= .E+30
BEG=-.*99*( )
EMD=.99*X(1)

98 H=(EMD-BEG)/FLOAT(INT)
DO 95 1=0, INT
SIK=BEC-+FLOAT( I)*H
DO 96 II=1,N

CALL LIN(W,WNSPEK,NISIKA,B,RES)
IY"(RES.GT.RESO) GO TO 95
RESO=RES
SIG=SIK

BG=B
J-1

95 CONTINUE
WRITE(5,80) AG,BG,RESO,SIG,SICO

C REDIFINE EMD AND BEG AND CONTINUE
IF (JK.GT.NN) GO TO 97
JK=JK+l
IF (J.EQ.0) J-1
IF (J.EQ.INT) J-INT-1
EMD-BEG+FLO)AT(J+1 )*Hj
BEG=EMD-2 .*H1
RESO=RES



SIGO-SIC
GO TO 98

80 FORMAT(2X, 0AG=0 8 El2.6,7X,'BG"
0
5 EI2.6/,2X5*RESO)-,E2.6,

1 5X,*SIG-0,E12.6,5X,*SIGO 0 ,El2.6)
C ECESIGO, AND EMi ARE THREE WEIBULL PARAMETERS

SIGO-EXP(SIGG)
ESIGO=SIG
EMNBG-1.

10 WRITE(5,100)SIGO,EM,SIC R:/2,tCM0 0 E26

1 5X,0m-0,E12.5,5X,0 SIGU=o,E12.6/)
C CALCULATED PROBABILITIES ARE LISTED AS BELOW

DO 130 111I,N
130 P(II)=ALO(X(II)-SI-)

CALL LIN( W V,-IP,EK,NSIG,AB,RES)
DO 108 11I,N

1 *((X(l)-ESIGO)/SIGo)**EM)
108 WRITE(5,110) PCAL,F(I),W(I),W M(I)
110 FORNAT(1X,0PCAL1F(I)3 W(I),WM(I')=

0
5 E12.6,3(1X,E12.6))

STOP
END

C SUBROUTINE UIN CALCULATES VALUES OF CONSTANTS A AND B WHICH
C REPRESENTS A STRAIGHT LINE Y=A+BX

SUBROUTINE LIN(W,WN,P,EK,N,SIGABRES)
DIMENSION W(20),P(20),EK(20),WN(20)
C=G.
D=O.
E0o.

H0o.
DO 4 I1I,N

CC-+(W(I))E~)

H=H+(W(I)*EK(I)*P(I))
4 CONTINUE

DEN=E*C-D*D
A-((E*G-D*H)/(DEN))
B=((C*H-D*G)/(DEN))

C THE CONSTANTS A AND BIARE KNOWN
C NOW FIND RESIDUE

SUM0. -

DO 5 1-1,N

5 SUM-SUMI+W(I)*WN(I)*WN(I)
RES-SUMi
RETURN
END
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EX BENDIN.FOR
FO)RTRAN: BENDIN
MA 1N
LIN
LINK: Loadiag
[LNKXCT BENDIN Execucion]

ENTER DATA FILE NO).
39

X(I),F(I),W(l) F)R= 1 .100000E+02 .300530r+00 .100000E+01
X(O),F&i),W(I) FO)R!= 2 .120000OrE+02 .4691L16E+0o .100000E+01
x(I),F(I),W(I) F')RI'= 3 .1500'CGE+02 .699COE+00 .lOGGGOE+0l
X(I)1F(i),W(l) FOR!- 4 .1700003E+02 .814019E+00 .100000E+01
X(I),F(i),W(l) FO)R!= 5 .20000GE+02 .922720E+00 .100000OE+01
AC-=- .555965E+01 BC-~ .328826E+01
RESO'= .540424E-03 SIG= .198G0cE-~oI SICGO= .003000E+00
AC--.4L;i0115E+0l BG= .295214E+01
RES') .182929E-04 SIG= .316800E+G1 SIGO= .198300E+G1
AC-=-.455"14rE+01 BC-= .299725E+01
RESO= .61ALU90E-G7 SIC= .30096%'E+01 SIC-O= .316800E+01
AG--.456974E+01 BG= K3Cl75EZ*31
RBrSO= .3218901-07 STG= .299376E+G1 SIGO- .300960E-1
AC-=-.45636GE+01 BC= .299995Z-01
RESO= .60s9547E-08 S'-1= .300CU0lE-31 S7tYn= .299376E4-01
AC--.L45636E+01. BG= .2999951E-G1
RE-30= .6GA957E-08 SIC= .30010E-0O1 sc=.300010E 01
AG=-.L6563!4S17+o0 BG= .2999.1-+O1
RESO=' .602325E-08 SIG=.~~2Eo SICO=' .300010E+01

WEIBULL PARAMV~ETERS ARE:
STQM=0 .339856E+01 m= 0.19999r+01 SIC"= .300022E+01

PCAL,F(l),W(I),WM(I)= .300532H-00 .300580F+00 .100000E+01 .891089E-05
PCAL Tr(I),W(I),WM(I)= .469106E+00 .!469116E+OG .100000E+01 -.289977E-04
FCAL,F(I),W'(l),WM(I)= .69902!E+00 .699000E+00 .100000E+01 .5748871-04
PCAL,F(I),W(),-Th(I)= .814066E-00 .814079E+00 .100000E+01l -.416636E-04
PCALF(I),W(I),WM(I)= .922722E+00 .922720E+00 .100000E+01 .76890DE-05
STOP

END OF EXECUTION
CPU TIME: 0.94 ELAPSED TIME: 1:5.62
EXIT
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SRoCl. BE~ND1N
t;* THIS PROGRAM IS FOR. 4-P0INT BF1)D1;'C HOLLOW CERAMIC ROD

WRITM(54k')
4FORMAT(2M, 0 ENTER DATA F~ILE~ 1;0IJMBFR AND ERRCIP BOUNID-)

RFAD( 5,*)ND ,KRR
K-!(,, 05 DATA POIN;TS

SP'-LOAD VAL2%;:

DO 22 I~,

IF PI.~~(-) C0 TO 212

JPw I

FTV( )-Il .:.'( /x )c~T

JMT+ Ix 2 :(JQ7)

F03 MkT (I X, j-' 1,' 7.2X 5)X!~3X,

,l;A .*C'S

C.. : 1 1 0: 2 U
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1)0 17 1-~1,K
VAP.-AA(N,')+FWAT(IJ-1 )*EI;c

IF (I-..Q.1) C-VA.
IF (.NN.iEQ.2) F.M-VAR
If (!-,Iu.FQ.3) SICU-VAP.
CALL ACAR(EP'RJLN,BN,XX)
TYF (I /)=XX

1 7 CONTINU?
C* N~OW COMPUTF RESIDUFS

WO 5 I1c1 1K

IF(N'N. HQ.3I)WRITF (5, 15)VAR.M,AR, FS

It FOR>1AT(1X~o0VAP.:C'F 3 .7,2X,0 ' ,1-,X,F.3,X ,'1CT.Tj,

1 ~1.bX,~.ESc~ IX, f'14 .6
lr(*,ouS.:292.',) Cu T(, I'
Du 81 1-1,K

Co To 11
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SUBROUTINE ACAR CIRIF,N, BN, XXX)

C* SIMPSON RULE PROCRAM FOR CIRCUL.AR BENDINCG ASF
~A AND B ARE LOWER AND UPYER LIMIT OF INTEGRATION

C* FOR FIRST FART OF IN;T,;'GATION,
C* D AND A ARE LOWER AND UPPER LIMIT OF INrTTCR.ATION FOR
C* SECOND FART OF INTEGRATION

N IS THE NUMBER OF SUBDIVISION
C* DX IS THE INTFRVAL

Cj ,F ,ANfD SICU AFY MATERIAL PAIRAMETFRF
FN-FLOAT(ti)
BNT-t;.

0* ED-MOME:7;T OF INEFRTIA
M-B.FN! 1;C MOMENT

C* D IS Y-THRESHOLD
C* THIREE~ CASE:S HAVE B!EFN COINSIDERED FOR Y-THP.ESHOLD

A-RI

2*CASF-1. Y-TURESHOLL CA'L' 0GCXR oUr"TSIDw PO.(IF O2-CURTHEN 1,BN-%')
'*AS?-". Y-Tl1Rv~H6LrD CAli OfC2IJR BFTWF:;,' IJ.AND FI

2j* CP.SW-3. Y-THFRESH1. 1-1 C At uCC1UI BE.TwEEN' F.I AND RC.

I!'(D.GT.B) Cu TO.; 3
~*XXX'-T?'.iU C,-l'.!. Yhf3AJ3IL ITY L'" FRAOTURE;

Ccu To .~

AXX'K.

1 4. I i
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Y2.CD

DO 4 J-I 1;M
Y I Y I +TDXl
Y 2-Y *L+TDX12

FN F32-'q:;3" +GRA;F2 (Y-)
Bl-(X )/3.)(Dx2*21;1+4.*EN;22

FUiCTILO' CRANF I (Y)

FPMIAT("X, >1,Y, SICTjSTC3 (WHF!1; SIC !X,4FI' .4/0 ~

F (ll G TC,: CRPy);!. 2)

G RM,0i /EA.
s "I) ky/F.D

Iu~ 1TUs IC-q Cu) ~(),zIc-i"
"7r L\(4

<~I X.

Y.: I P

Y I - I + 1
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NEWTON.FOR

PROG-RAM NEWTON
C* NEWTrON-RAPHSON METHOD
C* PROC-AM WEIB'JL THREE PARAMETERS
C* THE PARAMETERS ARE C, M, AND SIC-U
C* THIS PROG-RAM COMPUTES ALL PARAMETERS BY
C* NEWTON-RAPHSON METHOD

DIMENSION X(2o),F(20),W(20),A(201 20),z(20),B(20)
DIMENSION U(20),UIJ(20,3),U1(20),U3(20),UIKJ(20,3,3)
WRITE(5 ,10)

10 FORMAT(1X,OENTER DATA FILE NO.*)
RrAD(5 ,*)ND
READ(ND1*)N

C* ND-NO. OF DATA FILE
C* N- NO. OF WEIBUL POINT PAIRS
C* W- ARBITRARY WEIGHTS ASSIGNED TO DATA POINTS
C* X- FRACTURE STRESS VALUES

READ(ND,*)( (X(l),F(I) ,W(I)),I=1 ,N)
DO 1 I=1,N

1 WRITE(5,20)(I,X(I),F(I),W(I))
20 FORM -AT(1X,oX(I),F(I),W(I) FORI=*512,3(1X1 E12.6))
C* NOW SET THE VARIOUS SUkfXATIONS FOR THE LEAST SQUARE
C* METHOD, BUT FIRST MAKE A GUESS FOR C, SIGU, AND M
12 WRITE(5,24)
24 FOR!iAT(1X,GINPTUT THE GUESSES FOR CSIC-UJEM0)

READ(5,*)C,S-GU,EM
11 DO 3 11I,N

T=(X(I)-SIGU)
IF(T.LT.O.) T-0.
U( I) =C*T**EM
S1=EXP(-U(I))
S2=51*51

UI)(Il)I)* ( .- () )s~2

UIKJ(I,1,1)=0.
UIKJ(1,1,2)'UIJ(1,2)/C
UIKJ(1, 2, 1)=UIKJ(1, 1,2)
UIXJ(I, 2,2)=-(EM-1 .)*UIJ( 1 2)/T
UIKJCI,1,3)=UIJ(I,3)/C
UIKJ(1,3,1)=UIKJ(1,1,3)
UIKJ(I,2, 3)=(1 ,+EM*ALOGC(T))*UIJ(I,2)/EM
UIKJ(1,3,2)-'UIKJ(1,2,3)
UIKJ(I, 353)-U(I)*(ALOC(T))**2

3 CONTINUE
C* NOW FORM THE MATRIX B(I), AND A(I,J)
C* ZERO OUT A AND B

DO 30 1=1.3
B(l)u0.
DO 30 J=1.3
A('I,J)-0,
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30 CONTINUE
DO 14 I1,N
DO L& J-1,3
B(J)-B(J)+Ul(l)*'UIJ(I,J)
Do 4 K-1,3
A(J,K)-AJ,K)+U(I)*UIKJ(I,K,J)+'J3(I)*UIJ(I,J)*UIJ(IsK)
CONTINUE
CALL SOLVE(A,Z,B13,DET,5)
WRflE(5,13)fZ(I) ,I=1,3)

13 FOR)11AT(1X. 8DC.DST CU,DM-%E15.6)
c=c-z( 1
SIC-U=SICU-Z( 2)
EM-EM-Z( 3)
WRITE(5,~1L4)C, SIG-,EM

14 F'ORXAT(1X,*NEW WEIBULL PARAMIETERS ARE: C,SICU ,EM'',3El5.6)
ITESI1lHY
WRITE(5,15)

15 FORXAT(1X,oDO YOU WISH TO CONTINUE WITH PRESENT CORRECTIONS%,
1 /,0ANSWER Y OR Nc)

READ(5,16)ITE
16 FOR!IIAT(A1)

IF%'ITE.EQ.ITZSIL) GO TO 11
WRITE(5 ,17)

17 FOR.AAT(1X,oDO YOU WANT TO STOP-ANSWER Y OR NO)
READ( , 16)ITE
IF(ITi.FQ.ITES1)(7O TO 21
CGO TO 12

21 WRITE(5,1GG)C,EM,SI-U
100 FORM4AT(/,2X,eC=e,E12s6,5X,0EM ,IO,E12.6,5X,*SIGU-o,El2.6/)

STOP
ENDB
SUBROUTINE SOLVE(A,X,B,N,DETSNP)
DIMENSION B(20),X(20),A(2G,20),K(20),Y(20)
DO 16 1=1,N

16 K(l)-l
N 1=N-l

DET1I.
SIG=1.

DO 8 L-1,N1
C *~* SEARCH FOR LARGEST ELEMENT
C NP=UNIT NUMBER OF PRINTER

D-0.
DO 1 L1=L,N
DO 1 L2=L,N
IF(ABS(A(L1,L2))-ABS(D)) 1,1,1550

15503 D-A(L1,L2)
ID-L1
JD-L2

1 CONTINUE
IF(fl)2,99,2

C **** INTERCHANGE RnWS AND COLUMNS TO PUT LARGEST ELEMENT ONN DIAGO)NAL
2 IF (JD.EQ.L) GO TO 14
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SIG--SIG
IEMP-K(L)
K(L)-K(JD)
K(JD)=TrM.?
DO Li I1I,N
TEMP-A(I,L)
ACI,L)-A(I,JD)

4 A(I,JD)=TEMP
14 IF (ID.EQ.L) GO TO~ 15

SIc-=-SIG
DO 3 J=L,N
TEMFA(L,J)
A(L,J)=A(ID,J)

3 A(ID,J)=TEMP
TEMP=B(L)
B(L)=B( ID)
B( ID)=TEMP

C***ELIMINATE ELEMENTS IN COLUM N UNDER LARGEST ELEMENT

Ll=L+i
DO 5 J=L1,N

5 A(LJ)=A(L,J)/D
DET-rDET*D
DO 7 I=Ll,N
IF(A(I,L)) 1515,7,1515

1515 Dl=A(I,L)
DO 6 J=Ll,N

6 A(I,J)-A(I,J)-D1*A(L,J)

7 ONINUEI-D*BL
8 CONTINUE

IFk'A(N,N)) 9,99.9
C***BACK SUBSTITUTE TO SOLVE

9 Y(N)=B(N)/A(N,N)
DET=DET*A(N,N)*SIG
DO 11 L=1.NI
LL-N-L+ I
DI-B(LL-1)
DO 10 J=LL,N

10 D1=D1-A(LL-1XJ*vY(J)
11 Y(LL-1)=nl

C*k RE-ORDER ANSWER
DO 12 I'-1,N
J-K(I)

12 x(J)uYCI)
GO TO 13

99 WRITE(NP,100)
100 FORM4AT(2X,OMATRIX IS SINGULAR NO SOLUTInN GIVEN*)

DET=0.
13 RETURN

END
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